Ashkan Nikeghbali

  • The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy's continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-? convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. 

  • The volume presents extensive research devoted to a broad spectrum of mathematical analysis and probability theory.  Subjects discussed in this Work are those treated in the so-called StrasbourgZürich Meetings. These meetings occur twice yearly in each of the cities, Strasbourg and Zürich, venues of vibrant mathematical communication and worldwide gatherings. The topical scope of the book includes the study of monochromatic random waves defined for general Riemannian manifolds, notions of entropy related to a compact manifold of negative curvature, interacting electrons in a random background, lp-cohomology (in degree one) of a graph and its connections with other topics, limit operators for circular ensembles, polyharmonic functions for finite graphs and Markov chains, the ETH-Approach to Quantum Mechanics, 2-dimensional quantum YangMills theory, Gibbs measures of nonlinear Schrdinger equations, interfaces in spectral asymptotics and nodal sets. Contributions in this Work are composed by experts from the international community, who have presented the state-of-the-art research in the corresponding problems treated. This volume is expected to be a valuable resource to both graduate students and research mathematicians working in analysis, probability as well as their interconnections and applications.

  • Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects. The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.