This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs.The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles.The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology.Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Slawomir Kolodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.
This book focuses on the theory of the Gibbs semigroups, which originated in the 1970s and was motivated by the study of strongly continuous operator semigroups with values in the trace-class ideal. The book offers an up-to-date, exhaustive overview of the advances achieved in this theory after half a century of development. It begins with a tutorial introduction to the necessary background material, before presenting the Gibbs semigroups and then providing detailed and systematic information on the Trotter-Kato product formulae in the trace-norm topology. In addition to reviewing the state-of-art concerning the Trotter-Kato product formulae, the book extends the scope of exposition from the trace-class ideal to other ideals. Here, special attention is paid to results on semigroups in symmetrically normed ideals and in the Dixmier ideal.
By examining the progress made in Gibbs semigroup theory and in extensions of the Trotter-Kato product formulae to symmetrically normed and Dixmier ideals, the book shares timely and valuable insights for readers interested in pursuing these subjects further. As such, it will appeal to researchers, undergraduate and graduate students in mathematics and mathematical physics.
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hrmander's sums of squares and their fundamental solutions.
This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
The work on Autonomic Road Transport Support (ARTS) presented here aims at meeting the challenge of engineering autonomic behavior in Intelligent Transportation Systems (ITS) by fusing research from the disciplines of traffic engineering and autonomic computing. Ideas and techniques from leading edge artificial intelligence research have been adapted for ITS over the last 30 years. Examples include adaptive control embedded in real time traffic control systems, heuristic algorithms (e.g. in SAT-NAV systems), image processing and computer vision (e.g. in automated surveillance interpretation). Autonomic computing which is inspired from the biological example of the body's autonomic nervous system is a more recent development. It allows for a more efficient management of heterogeneous distributed computing systems. In the area of computing, autonomic systems are endowed with a number of properties that are generally referred to as self-X properties, including self-configuration, self-healing, self-optimization, self-protection and more generally self-management. Some isolated examples of autonomic properties such as self-adaptation have found their way into ITS technology and have already proved beneficial. This edited volume provides a comprehensive introduction to Autonomic Road Transport Support (ARTS) and describes the development of ARTS systems. It starts out with the visions, opportunities and challenges, then presents the foundations of ARTS and the platforms and methods used and it closes with experiences from real-world applications and prototypes of emerging applications. This makes it suitable for researchers and practitioners in the fields of autonomic computing, traffic and transport management and engineering, AI, and software engineering. Graduate students will benefit from state-of-the-art description, the study of novel methods and the case studies provided.
This volume offers an integrated understanding of how the theory of general relativity gained momentum after Einstein had formulated it in 1915. Chapters focus on the early reception of the theory in physics and philosophy and on the systematic questions that emerged shortly after Einstein's momentous discovery. They are written by physicists, historians of science, and philosophers, and were originally presented at the conference titled Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, held at the University of Bern from September 12-14, 2017. By establishing the historical context first, and then moving into more philosophical chapters, this volume will provide readers with a more complete understanding of early applications of general relativity (e.g., to cosmology) and of related philosophical issues. Because the chapters are often cross-disciplinary, they cover a wide variety of topics related to the general theory of relativity. These include:Heuristics used in the discovery of general relativityMach's PrincipleThe structure of Einstein's theoryCosmology and the Einstein worldStability of cosmological modelsThe metaphysical nature of spacetimeThe relationship between spacetime and dynamicsThe Geodesic PrincipleSymmetriesThinking About Space and Time will be a valuable resource for historians of science and philosophers who seek a deeper knowledge of the (early and later) uses of general relativity, as well as for physicists and mathematicians interested in exploring the wider historical and philosophical context of Einstein's theory.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version.
In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions.
This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
This volume provides a detailed description of some of the most active areas in astrophysics from the largest scales probed by the Planck satellite to massive black holes that lie at the heart of galaxies and up to the much awaited but stunning discovery of thousands of exoplanets. It contains the following chapters:
o Jean-Philippe UZAN, The Big-Bang Theory: Construction, Evolution and Status
o Jean-Loup PUGET, The Planck Mission and the Cosmic Microwave Background
o Reinhard GENZEL, Massive Black Holes: Evidence, Demographics and Cosmic Evolution
o Arnaud CASSAN, New Worlds Ahead: The Discovery of Exoplanets
Reinhard Genzel and Andrea Ghez shared the 2020 Nobel Prize in Physics "for the discovery of a supermassive compact object at the centre of our galaxy'", alongside Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity". The book corresponds to the twentieth Poincaré Seminar, held on November 21, 2015, at Institut Henri Poincaré in Paris.
Originally written as lectures to a broad scientific audience, these four chapters are of high value and will be of general interest to astrophysicists, physicists, mathematicians and historians.
Quaternionic and Clifford analysis are an extension of complex analysis into higher dimensions. The unique starting point of Wolfgang Sprßig's work was the application of quaternionic analysis to elliptic differential equations and boundary value problems. Over the years, Clifford analysis has become a broad-based theory with a variety of applications both inside and outside of mathematics, such as higher-dimensional function theory, algebraic structures, generalized polynomials, applications of elliptic boundary value problems, wavelets, image processing, numerical and discrete analysis.
The aim of this volume is to provide an essential overview of modern topics in Clifford analysis, presented by specialists in the field, and to honor the valued contributions to Clifford analysis made by Wolfgang Sprßig throughout his career.
Capturing the state of the art of the interplay between positivity, noncommutative analysis, and related areas including partial differential equations, harmonic analysis, and operator theory, this volume was initiated on the occasion of the Delft conference in honour of Ben de Pagter's 65th birthday. It will be of interest to researchers in positivity, noncommutative analysis, and related fields.
Contributions by Shavkat Ayupov, Amine Ben Amor, Karim Boulabiar, Qingying Bu, Gerard Buskes, Martijn Caspers, Jurie Conradie, Garth Dales, Marcel de Jeu, Peter Dodds, Theresa Dodds, Julio Flores, Jochen Glück, Jacobus Grobler, Wolter Groenevelt, Markus Haase, Klaas Pieter Hart, Francisco Hernández, Jamel Jaber, Rien Kaashoek, Turabay Kalandarov, Anke Kalauch, Arkady Kitover, Erik Koelink, Karimbergen Kudaybergenov, Louis Labuschagne, Yongjin Li, Nick Lindemulder, Emiel Lorist, Qi Lü, Miek Messerschmidt, Susumu Okada, Mehmet Orhon, Denis Potapov, Werner Ricker, Stephan Roberts, Pablo Román, Anton Schep, Claud Steyn, Fedor Sukochev, James Sweeney, Guido Sweers, Pedro Tradacete, Jan Harm van der Walt, Onno van Gaans, Jan van Neerven, Arnoud van Rooij, Freek van Schagen, Dominic Vella, Mark Veraar, Anthony Wickstead, Marten Wortel, Ivan Yaroslavtsev, and Dmitriy Zanin.
This monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrdinger equations by applying suitable variational and topological methods.The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrdinger equations by applying variational and topological methods.
The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems.
The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory.
Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.
This volume, a celebration of Anthony Joseph's fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled "Algebraic Modes of Representations," the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including:Primitive idealsInvariant theoryGeometry of Lie group actionsQuantum affine algebrasYangiansCategorificationVertex algebrasThis volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.
This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions.
In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms.
One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.
In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis. There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any "full" interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory.
?This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach.
The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master's level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.
This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau's Hessian and Laplacian principles and subsequent improvements.
Why do polished stones look wet? How does the Twin Paradox work? What if Jupiter were a star? How can we be sure that pi never repeats? How does a quantum computer break encryption? Discover the answers to these, and other profound physics questions!
This fascinating book presents a collection of articles based on conversations and correspondences between the author and complete strangers about physics and math. The author, a researcher in mathematical physics, responds to dozens of questions posed by inquiring minds from all over the world, ranging from the everyday to the profound.
Rather than unnecessarily complex explanations mired in mysterious terminology and symbols, the reader is presented with the reasoning, experiments, and mathematics in a casual, conversational, and often comical style. Neither over-simplified nor over-technical, the lucid and entertaining writing will guide the reader from each innocent question to a better understanding of the weird and beautiful universe around us.
Advance praise for Do Colors Exist?:
"Every high school science teacher should have a copy of this book. The individual articles offer enrichment to those students who wish to go beyond a typical `dry curriculum'. The articles are very fun. I probably laughed out loud every 2-3 minutes. This is not easy to do. In fact, my children are interested in the book because they heard me laughing so much."
- Ken Ono, Emory University
Every age and every culture has relied on the incorporation of mathematics in their works of architecture to imbue the built environment with meaning and order. Mathematics is also central to the production of architecture, to its methods of measurement, fabrication and analysis. This two-volume edited collection presents a detailed portrait of the ways in which two seemingly different disciplines are interconnected. Over almost 100 chapters it illustrates and examines the relationship between architecture and mathematics. Contributors of these chapters come from a wide range of disciplines and backgrounds: architects, mathematicians, historians, theoreticians, scientists and educators. Through this work, architecture may be seen and understood in a new light, by professionals as well as non-professionals.Volume II covers architecture from the Late Renaissance era, through Baroque, Ottoman, Enlightenment, Modern and contemporary styles and approaches. Key figures covered in this volume include Palladio, Michelangelo, Borromini, Sinan, Wren, Wright, Le Corbusier, Breuer, Niemeyer and Kahn. Mathematical themes which are considered include linear algebra, tiling and fractals and the geographic span of the volume's content includes works in the United States of America and Australia, in addition to those in Europe and Asia.
In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern.
The author informs and intrigues his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal's triangle, the Rubik cube, Mersenne's curious keyboards, and many others. A theme running through is the thought of what is our favourite number.
Written in an engaging and witty style and requiring only basic school mathematical knowledge, this book will appeal to both young and mature readers fascinated by the curiosities of numbers.
This visionary and engaging book provides a mathematical perspective on the fundamental ideas of numbers, space, life, evolution, the brain and the mind. The author suggests how a development of mathematical concepts in the spirit of category theory may lead to unravelling the mystery of the human mind and the design of universal learning algorithms.The book is divided into two parts, the first of which describes the ideas of great mathematicians and scientists, those who saw sparks of light in the dark sea of unknown. The second part, Memorandum Ergo, reflects on how mathematics can contribute to the understanding of the mystery of thought. It argues that the core of the human mind is a structurally elaborated object that needs a creation of a broad mathematical context for its understanding. Readers will discover the main properties of the expected mathematical objects within this context, called ERGO-SYSTEMS, and readers will see how these "systems" may serve as prototypes for design of universal learning computer programs. This is a work of great, poetical insight and is richly illustrated. It is a highly attractive read for all those who welcome a mathematical and scientific way of thinking about the world.
This book presents four survey articles on various aspects of open quantum systems, specifically addressing quantum Markovian processes, Feller semigroups and nonequilibrium dynamics. The contributions are based on lectures given by distinguished experts at a summer school in Gttingen, Germany. Starting from basic notions, the authors of these lecture notes accompany the reader on a journey up to the latest research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. Though the book is primarily addressed to graduate students, it will also be of interest to researchers.
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today.
The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using "computationally intensive controls," so the second part of this book addresses the solution of optimization problems in "real" time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance.
The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli's work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange's d-calculus, including: o The isoperimetrical problemso Shortest lines and geodesicso Euler's Methodus Inveniendi and the two AdditamentaFinally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field. This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.
Work examines the latest algorithms and tools to solve classical types of diophantine equations.; Unique book---closest competitor, Smart, Cambridge, does not treat index form equations.; Author is a leading researcher in the field of computational algebraic number theory.; The text is illustrated with several tables of various number fields, including their data on power integral bases.; Several interesting properties of number fields are examined.; Some infinite parametric families of fields are also considered as well as the resolution of the corresponding infinite parametric families of diophantine equations.