One of the world's foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to Weinstein's ongoing influence.
The well-recognized contributors to this text cover a broad range of topics: Induction and reduction for systems with symmetry, symplectic geometry and topology, geometric quantization, the Weinstein Conjecture, Poisson algebra and geometry, Dirac structures, deformations for Lie group actions, Kähler geometry of moduli spaces, theory and applications of Lagrangian and Hamiltonian mechanics and dynamics, symplectic and Poisson groupoids, and quantum representations.
Intended for graduate students and working mathematicians in symplectic and Poisson geometry as well as mechanics, this text is a distillation of prominent research and an indication of the future trends and directions in geometry, mechanics, and mathematical physics.
Contributors: H. Bursztyn, M. Cahen, M. Crainic, J. J. Duistermaat, K. Ehlers, S. Evens, V. L. Ginzburg, A. B. Givental, S. Gutt, D. D. Holm, J. Huebschmann, L. Jeffrey, F. Kirwan, M. Kogan, J. Koiller, Y. Kosmann-Schwarzbach, B. Kostant, C. Laurent-Gengoux, J-H. Lu, J. E. Marsden, K. C. H. Mackenzie, Y. Maeda, C-M. Marle, T. E. Milanov, N. Miyazaki, R. Montgomery, Y-G. Oh, J-P. Ortega, H. Omori, T. S. Ratiu, P. M. Rios, L. Schwachhfer, J. Stasheff, I. Vaisman, A. Yoshioka, P. Xu, and S. Zelditch.
The work on Autonomic Road Transport Support (ARTS) presented here aims at meeting the challenge of engineering autonomic behavior in Intelligent Transportation Systems (ITS) by fusing research from the disciplines of traffic engineering and autonomic computing. Ideas and techniques from leading edge artificial intelligence research have been adapted for ITS over the last 30 years. Examples include adaptive control embedded in real time traffic control systems, heuristic algorithms (e.g. in SAT-NAV systems), image processing and computer vision (e.g. in automated surveillance interpretation). Autonomic computing which is inspired from the biological example of the body's autonomic nervous system is a more recent development. It allows for a more efficient management of heterogeneous distributed computing systems. In the area of computing, autonomic systems are endowed with a number of properties that are generally referred to as self-X properties, including self-configuration, self-healing, self-optimization, self-protection and more generally self-management. Some isolated examples of autonomic properties such as self-adaptation have found their way into ITS technology and have already proved beneficial. This edited volume provides a comprehensive introduction to Autonomic Road Transport Support (ARTS) and describes the development of ARTS systems. It starts out with the visions, opportunities and challenges, then presents the foundations of ARTS and the platforms and methods used and it closes with experiences from real-world applications and prototypes of emerging applications. This makes it suitable for researchers and practitioners in the fields of autonomic computing, traffic and transport management and engineering, AI, and software engineering. Graduate students will benefit from state-of-the-art description, the study of novel methods and the case studies provided.
The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps.
Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The "Complements and Open Problems" sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena.
Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version.
In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions.
This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
This volume provides a detailed description of some of the most active areas in astrophysics from the largest scales probed by the Planck satellite to massive black holes that lie at the heart of galaxies and up to the much awaited but stunning discovery of thousands of exoplanets. It contains the following chapters:
o Jean-Philippe UZAN, The Big-Bang Theory: Construction, Evolution and Status
o Jean-Loup PUGET, The Planck Mission and the Cosmic Microwave Background
o Reinhard GENZEL, Massive Black Holes: Evidence, Demographics and Cosmic Evolution
o Arnaud CASSAN, New Worlds Ahead: The Discovery of Exoplanets
Reinhard Genzel and Andrea Ghez shared the 2020 Nobel Prize in Physics "for the discovery of a supermassive compact object at the centre of our galaxy'", alongside Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity". The book corresponds to the twentieth Poincaré Seminar, held on November 21, 2015, at Institut Henri Poincaré in Paris.
Originally written as lectures to a broad scientific audience, these four chapters are of high value and will be of general interest to astrophysicists, physicists, mathematicians and historians.
?This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach.
The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master's level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.
This monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrdinger equations by applying suitable variational and topological methods.The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrdinger equations by applying variational and topological methods.
In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis. There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any "full" interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory.
This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau's Hessian and Laplacian principles and subsequent improvements.
This book is an extension to Arno van den Essen's Polynomial Automorphisms and the Jacobian Conjecture published in 2000. Many new exciting results have been obtained in the past two decades, including the solution of Nagata's Conjecture, the complete solution of Hilbert's fourteenth problem, the equivalence of the Jacobian Conjecture and the Dixmier Conjecture, the symmetric reduction of the Jacobian Conjecture, the theory of Mathieu-Zhao spaces and counterexamples to the Cancellation problem in positive characteristic. These and many more results are discussed in detail in this work.
The book is aimed at graduate students and researchers in the field of Affine Algebraic Geometry. Exercises are included at the end of each section.
The book offers an extensive study on the convoluted history of the research of algebraic surfaces, focusing for the first time on one of its characterizing curves: the branch curve. Starting with separate beginnings during the 19th century with descriptive geometry as well as knot theory, the book focuses on the 20th century, covering the rise of the Italian school of algebraic geometry between the 1900s till the 1930s (with Federigo Enriques, Oscar Zariski and Beniamino Segre, among others), the decline of its classical approach during the 1940s and the 1950s (with Oscar Chisini and his students), and the emergence of new approaches with Boris Moishezon's program of braid monodromy factorization.By focusing on how the research on one specific curve changed during the 20th century, the author provides insights concerning the dynamics of epistemic objects and configurations of mathematical research. It is in this sense that the book offers to take the branch curve as a cross-section through the history of algebraic geometry of the 20th century, considering this curve as an intersection of several research approaches and methods. Researchers in the history of science and of mathematics as well as mathematicians will certainly find this book interesting and appealing, contributing to the growing research on the history of algebraic geometry and its changing images.
Beyond Lack of Compactness and Lack of Stability of a Coupled Parabolic-Hyperbolic Fluid-Structure System.- A Continuous Adjoint Approach to Shape Optimization for Navier Stokes Flow.- Recent Advances in the Analysis of State-constrained Elliptic Optimal Control Problems.- Fast and Strongly Localized Observation for a perturbed Plate Equation.- Representations, Composition, and Decomposition of C 1,1-hypersurfaces.- On Some Nonlinear Optimal Control Problems with Vector-valued Affine Control Constraints.- Weak Solutions to a Model for Crystal Growth from the Melt in Changing Magnetic Fields.- Lavrentiev Prox-regularization Methods for Optimal Control Problems with Pointwise State Constraints.- Nonlinear Feedback Solutions for a Class of Quantum Control Problems.- Optimal Feedback Synthesis for Bolza Control Problem Arising in Linearized Fluid Structure Interaction.- Single-step One-shot Aerodynamic Shape Optimization.- Shape Differentiability of Drag Functional for Compressible Navier-Stokes Equations.- Null-controllability for a Coupled Heat-Finite-dimensional Beam System.- Feedback Modal Control of Partial Differential Equations.- Optimization Problems for Thin Elastic Structures.- A New Non-linear Semidefinite Programming Algorithm with an Application to Multidisciplinary Free Material Optimization.- How to Check Numerically the Sufficient Optimality Conditions for Infinite-dimensional Optimization Problems.- Hidden Boundary Shape Derivative for the Solution to Maxwell Equations and Non Cylindrical Wave Equations.
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference "Fourier Analysis and Pseudo-Differential Operators," June 25-30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series "Fourier Analysis and Partial Differential Equations."
This book is the proceeding of the International Workshop on Operator Theory and Applications (IWOTA) held in July 2018 in Shanghai, China. It consists of original papers, surveys and expository articles in the broad areas of operator theory, operator algebras and noncommutative topology. Its goal is to give graduate students and researchers a relatively comprehensive overview of the current status of research in the relevant fields. The book is also a special volume dedicated to the memory of Ronald G. Douglas who passed away on February 27, 2018 at the age of 79. Many of the contributors are Douglas' students and past collaborators. Their articles attest and commemorate his life-long contribution and influence to these fields.
Networks have become nearly ubiquitous and increasingly complex, and their support of modern enterprise environments has become fundamental. Accordingly, robust network management techniques are essential to ensure optimal performance of these networks. This monograph treats the application of numerous graph-theoretic algorithms to a comprehensive analysis of dynamic enterprise networks. Network dynamics analysis yields valuable information about network performance, efficiency, fault prediction, cost optimization, indicators and warnings.
The exposition is organized into four relatively independent parts: an introduction and overview of typical enterprise networks and the graph theoretical prerequisites for all algorithms introduced later; an in-depth treatise of usage of various graph distances for event detection; a detailed exploration of properties of underlying graphs with modeling applications; and a theoretical and applied treatment of network behavior inferencing and forecasting using sequences of graphs.
Based on many years of applied research on generic network dynamics, this work covers a number of elegant applications (including many new and experimental results) of traditional graph theory algorithms and techniques to computationally tractable network dynamics analysis to motivate network analysts, practitioners and researchers alike. The material is also suitable for graduate courses addressing state-of-the-art applications of graph theory in analysis of dynamic communication networks, dynamic databasing, and knowledge management.
Systems biology represents the integration and application of various technologies that share a common goal of measuring globally the properties of a specific biological sample. These combined data describe and monitor the complex networks that exist within each cell, tissue and organism, and can be used to generate predictive models of the behavior of the system. This volume aims to provide a timely view of the "state of the art" in systems biology. The editors take the opportunity to define systems biology as they and the contributing authors see it, and this will lay the groundwork for future studies. The volume is well-suited to both students and researchers interested in the methods of systems biology. Although the focus is on plant systems biology, the proposed material could be suitably applied to any organism.
This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.
In this book we are concerned with the study of a certain class of in?nite matrices and two important properties of them: their Fredholmness and the stability of the approximation by their ?nite truncations. Let us take these two properties as a starting point for the big picture that shall be presented in what follows. Stability Fredholmness We think of our in?nite matrices as bounded linear operators on a Banach space E of two-sided in?nite sequences. Probably the simplest case to start with 2 +? is the space E = of all complex-valued sequences u=(u ) for which m m=?? 2 |u | is summable over m? Z. m Theclassofoperatorsweareinterestedinconsistsofthoseboundedandlinear operatorsonE whichcanbeapproximatedintheoperatornormbybandmatrices. We refer to them as band-dominated operators. Of course, these considerations 2 are not limited to the space E = . We will widen the selection of the underlying space E in three directions: p o We pass to the classical sequence spaces with 1? p??. n o Our elements u=(u )? E have indices m? Z rather than just m? Z. m o We allow values u in an arbitrary ?xed Banach spaceX rather than C.
This book documents the rich structure of the holomorphic Q function spaces which are geometric in the sense that they transform naturally under conformal mappings, with particular emphasis on recent development based on interaction between geometric function and measure theory and other branches of mathematical analysis, including potential theory, harmonic analysis, functional analysis, and operator theory. Largely self-contained, the book functions as an instructional and reference work for advanced courses and research in conformal analysis, geometry, and function spaces. Self-contained, the book functions as an instructional and reference work for advanced courses and research in conformal analysis, geometry, and function spaces.
This book highlights important developments on artinian modules over group rings of generalized nilpotent groups. Along with traditional topics such as direct decompositions of artinian modules, criteria of complementability for some important modules, and criteria of semisimplicity of artinian modules, it also focuses on recent advanced results on these matters.
This book is the sixth in a series of lectures of the S´ eminaire Poincar´ e,whichis directed towards a large audience of physicists and of mathematicians. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental aspects are covered, with some historical background. Inspired by the Bourbaki seminar in mathematics in its organization, hence nicknamed "Bourbaphi", the Poincar´ e Seminar is held twice a year at the Institut Henri Poincar´ e in Paris, with cont- butions prepared in advance. Particular care is devoted to the pedagogical nature of the presentations so as to ful?ll the goal of being readable by a large audience of scientists. This volume contains the ninth such Seminar, held in 2006. It is devoted to Relativity and Experiment. This book starts with a detailed introduction to general relativity by T. Damour. It includes a review of what may lie beyond by string theorist I. - toniadis, and collects up-to-date essays on the experimental tests of this theory. General relativity is now a theory well con?rmed by detailed experiments, incl- ing the precise timing of the double pulsar J0737-3039 explained by M. Kramer, member of the team which discovered it in 2003, and satellite missions such as Gravity Probe B described by J. Mester. The search for detecting gravitational waves is also very much under way as reviewed by J.Y. Vinet. Wehopethatthecontinuedpublicationofthisserieswillservethecommunity of physicists and mathematicians at professional or graduate student level.
This volume is devoted to Quantum Decoherence with lectures from the Séminaire Poincaré, held in November 2005 at the Institute Henri Poincaré Paris. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental results are covered, with some historical background. Particular care is devoted to the pedagogical nature of the presentation.
The main subject of this book is an up-to-date and in-depth survey of the theory of normal frames and coordinates in di?erential geometry. The existing results, as well as new ones obtained lately by the author, on the theme are presented. The text is so organized that it can serve equally well as a reference manual, introduction to and review of the current research on the topic. Correspondingly, the possible audience ranges from graduate and post-graduate students to sci- tists working in di?erential geometry and theoretical/mathematical physics. This is re?ected in the bibliography which consists mainly of standard (text)books and journal articles. The present monograph is the ?rst attempt for collecting the known facts concerting normal frames and coordinates into a single publication. For that r- son, the considerations and most of the proofs are given in details. Conventionally local coordinates or frames, which can be holonomic or not, are called normal if in them the coe?cients of a linear connection vanish on some subset, usually a submanifold, of a di?erentiable manifold. Until recently the ex- tence of normal frames was known (proved) only for symmetric linear connections on submanifolds of a manifold. Now the problems concerning normal frames for derivationsof thetensor algebraovera di?erentiablemanifoldarewellinvestigate; in particular they completely cover the exploration of normal frames for arbitrary linear connections on a manifold. These rigorous results are important in conn- tion with some physical applications.
Survey Papers.- An ?-logic Primer.- Upper Semi-lattice Algebras and Combinatorics.- Small Definably-large Cardinals.- Real-valued Measurable Cardinals and Well-orderings of the Reals.- Complexity of Sets and Binary Relations in Continuum Theory: A Survey.- Weak Systems of Gandy, Jensen and Devlin.- Some New Directions in Infinite-combinatorial Topology.- Research Papers.- The Number of Near-Coherence Classes of Ultrafilters is Either Finite or .- Stable Axioms of Set Theory.- Forcing with Finite Conditions.- Subgroups of Abelian Polish Groups.- On the Strength of Mutual Stationarity.- Part(?, ?) and Part*(?, ?).- Local Connectedness and Distance Functions.- Bounded Martin's Maximum and Strong Cardinals.